Monobactams. The Conversion **of** 6-APA to **(S)-3-Amino-2-oxoazetidine-l-sulfonic** Acid and Its 3(RS)-Methoxy Derivative

Summary: A facile conversion of 6-APA to (S)-3-aminomonobactamic acid $(3-AMA)$ and its $3(RS)$ -methoxy derivative, key intermediates for the synthesis of 3-(acyl**amino)-2-oxoazetidine-l-sulfonic** acids (monobactams), is described.

Sir: The isolation of various 3-(acylamino)-2-oxoazetidine-1-sulfonic acids **(1)** from certain bacteria was We have suggested the term "monobactams" for this novel family of monocyclic β lactam antibiotics and the designation "3-aminomonobactamic acid" (3-AMA) for zwitterion **2.** We herein describe the conversion of 6-APA (3) **to** the key intermediates **4** and **5** from which naturally-occurring nonmethoxylated (via **4)** and methoxylated (via **5)** monobactams2 have been prepared. These intermediates also have great utility in the preparation of side chain analogues of **l.3**

In contrast to penicillin and cephalosporin precedent, naturally-occurring monobactams were not a useful source of **4** and **5.** The only bacterially produced nonmethoxylated monobactam was isolated from a mixture containing at least four methoxylated analogues² and was not obtained in sufficient quantity to warrant conversion to **4.** SQ 26,180 **(6),** the simplest naturally-occurring monobactam, was available in sufficient quantity to attempt conversion to the R enantiomer of **5** via imino chloride **7,** in analogy with removal of side chains from cephamycins.^{8b} Reaction of **6** with phosgene (Scheme I), however, gave chloro ether 9 and acetonitrile (identified by ¹H NMR) rather than the expected imino chloride **7.** The structure of 9 was inferred from spectral properties,⁴ from mechanistic argument,^{5} and by conversion to 10 μ mp 176-178 $\rm ^{o}C)^{4,6}$ with pyridine.⁷ This facile example of the Von Braun reaction of secondary amides is facilitated by charge Scheme **I** $[M^* = (n-Bu)$ _AN⁺ $]$ ^a

 a (a) COCl₂, 3 pyridine/CH₃CN, 45 °C, 2 h (~100%). **(b)** 1.5 pyridine/CH,CN, 45 'C, 18 **h (59%** from **6).**

 a (a) 1 M pyridine $SO_3/DMF-CH_2Cl_2$ (1:1), 2 h, room temperature (~100%). (b) (1) TMSCI, Et₃N, CCI₄ (88%); **(2)** 0.15 M TMSOSO,CI/CH,Cl,, **⁰**'C, 1 h; **(3) 0.5** ^M $KH_{2}PO_{4}$. (c) (1) DMFSO₃/DMF; (2) 0.5 M KH₂PO₄. (3) $CH₂Cl₂/(n-Bu)₄N+HSO₄$.

neutralization in zwitterion **8** and by lack of an electronwithdrawing substituent at C-4 of the azetidinone. In contrast, this procedure yields stable imino chlorides in the cephamycin series. 8 Because of these difficulties, we turned to 6-APA as a readily-available, chiral β -lactam synthon.

At the initial stage of this investigation, little was known of the chemistry of monobactams. Our planning was conservative, therefore, and relied on the hydrogenolysis of benzyloxycarbonyl derivatives **12** and **14** to prepare **4** and 5, respectively (Scheme II). The use of tetra-n-butylammonium salts, originally suggested by the successful ion-pair extraction of the natural products,² simplified handling of these small, polar, negatively charged molecules in organic solvents. The requisite (S) -3- $[$ (benzyl**oxycarbonyl)amino]-2-azetidinone 11** [mp 163-164 *OC,6* $[\alpha]_D$ –17.8° *(c 0.72, = CH₃OH)*]⁹ was prepared from 6-APA by a procedure, applicable to kilogram scale, adapted from Moll,¹⁰ Bose,¹¹ and Kamiya.¹²

⁽¹⁾ Imada, A.; Kitano, K.; Kintaka, K.; Murai, M.; Asai, M. Nature *(London)* **1981,289, 590-591.**

⁽²⁾ Sykes, R. B.; Cimarusti, C. M.; Bonner, D. P.; Bush, K.; Floyd, D. M.; Georgopapadakou, N. H.; Koster, W. H.; Liu, W. C.; Parker, W. L.; Principe, P. A.; Rathnum, M. L.; Slusarchyk, W. A.; Trejo, W. H.; Wells, J. S. *Nature (London)* **1981,291, 489-491.**

⁽³⁾ Cimarusti, C. M.; Sykes, R. B.; Applegate, H. E.; Bonner, D. P.; Breuer, H.; Chang, H. W.; Denzel, Th.; Floyd, D. M.; Fritz, A.; Koster, W. H.; Liu, W.; Parker, W. L.; Rathnum, M. L.; Slusarchyk, W. A.; Treuner, U.; Young, M.; "Monobactams, Monocyclic β -Lactams Produced by Bacteria. Studies Leading to SQ 26,776"; 182nd National Meeting of American Chemical Society, New York, **1981;** Belgian Patent **887428, 1981.**

⁽⁴⁾ 18C NMR (CD,CN): **9, 55.5, 59.2, 102.2, 159.6** ppm; **10, 54.9, 55.8, 101.6, 157.9** ppm.

⁽⁵⁾ Vaughan, W. R.; Carlson, R. D. J. *Am. Chem. SOC.* **1961, 84, 7 6 9- 7 7 4.**

⁽⁶⁾ All crystalline compounds for which a melting point is given gave satisfactory elemental analysis and consistent spectral data.

⁽⁷⁾ The reaction of **2-halo-2-methoxy-B-lactams** in the penicillin series with azide ion proceeds in a similar way: Cama, L. D.; Leanza, W. J.; Beattie, T. R.; Christensen, B. G. *J.* Am. *Chem. SOC.* **1972,94,1408-1410.**

⁽⁸⁾ (a) Lunn, W. H.; Burchfield, R. W.; Elezy, T. K.; Mason, E. V. *Tetrahedron Lett.* **1974,1307-1310.** (b) Applegate, **H.** E.; Cimarusti, C.

M.; Slusarchyk, W. A. J. Chem. Soc., Chem. Commun. 1980, 293-294.
(9) This compound is reported in the patent literature by the Fujisawa
group [mp 164-165 °C; British Patent 1519 495, 1978; Example 413]. **(IO)** Moll, **F.;** Hannig, M. Arch. *Pharm. (Weinheim, Ger.)* **1970,** *303,* **831-841.**

For implementation of Scheme 11, a chemoselective sulfonation of the azetidinone nitrogen of **11** or **13** in the presence of the urethane nitrogen was needed. Despite the lack of literature precedent, we believed that the azetidinone nitrogen would be more nucleophilic because of $reduced$ amide $resonance.¹³$ Three sulfonation procedures (detailed in Scheme 111) for the conversion of **11** to various salts of **12** have been developed. Reaction of **11** with 1 equiv of pyridine-sulfur trioxide complex 14,15 gave pyridinium salt **12a** in virtually quantitative yield. Chemoselective silylation of **11** also occurs on the azetidinone nitrogen; subsequent reaction¹⁶ with trimethylsilyl chlorosulfonate gives the trimethylsilyl ester of **12** which is hydrolyzed in buffer to potassium salt **12b** (mp 193-196 ^oC_,⁶ isolated by HP-20 chromatography.¹⁷ The most general procedure we have developed involves sulfonation with $\overline{DMF-SO_3}$ complex¹⁸ followed by quenching into buffer and ion-pair extraction to give directly tetra-n-butylammonium salt **12c** (mp 107-114.5 0C).6

Hydrogenolysis of **12c** in DMF gives 419 in excellent yield. It is convenient to acylate **4** in situ by addition of equivalent amounts of $RCO₂H$, DCC, and N-hydroxybenzotriazole to the filtered hydrogenolysis mixture. Suitable workup gives good to excellent yields of $1 (X =$ H).

Conversion **of 11** to **13** could be accomplished via the novel N_nN'-dichloro derivative 15.²⁰ We expected that the N-chloroazetidinone moiety would be inert to base treatment since it should be stable to endocyclic acylimine formation (increased ring strain) and to ring-opening elimination (stereoelectronic factors).²¹ Subsequent removal of the N-chloroazetidinone "protecting group" by reduction was anticipated. The reaction of **15** with 1.1 equiv of lithium methoxide,²² followed by reduction of 16 with trimethyl phosphite, gave racemic methoxyazetidinone **13** (44%, mp 112-114 oC).6

Sulfonation of **13** proved to be much slower compared *to* **11** due **to** electron withdrawal by the methoxy group but proceeded in high yield with excess pyridine-sulfur trioxide

(14) Sulfonation of primary amides with pyridine-sulfur trioxide p roduces acylsulfamic acids ($\text{RCONHSO}_3\text{H}$): Baumgarten, P; Marggraff, I. Chem. Ber. 1931,64, 1582-1588.

(15) A Takeda group has made extensive use of this reaction in the synthesis of monobactams including alternate salts of 12 and 14 and more than 100 other analogues. Single examples of **hydrogenolysis-acylation** of 12 and 14 are **also** reported (European Patent Applications 80301 898.5 and 80 301 900.9, 1981).

(16) Acylation of N-silylated azetidinones has been reported: Kricheldorf, **H.** R. Makromol. Chem. 1973, 170,89-103.

(17) HP-20 AG is the analytical grade of a macroreticular polystyrene-divinylbenzene copolymer available from Mitsubishi Chemical Industries, Ltd. We have made extensive use of chromatography of monobactam potassium **salts** on this medium.

(18) Prepared analogously to dioxane-sulfur trioxide: Hofman, K.;

Simchen, G. Synthesis **1979**, 699–700.

(19) 4: ¹H NMR (CDCl₃) 3.80 (apparent t, $J_{4a-4\beta} \approx 6$ Hz, $J_{3a-4\alpha} \approx 6$

Hz, 4α -H), 4.05 ppm (d of d, $J_{4a-4\beta} \approx 6$ Hz, $J_{3a-4\beta} \approx 6$

Hz, 40 -H), 4.05 ppm (d of d,

min, extractive workup with ethyl acetate gave 98% of 15.

(21) Mulzer, J.; Kerkmann, **T.** *J.* Am. Chem. **SOC.** 1980, *102,* 3620-3622.

(22) **This** two-step **chlorination-methoxylation** sequence is a combination of the methods of Baldwin and Koppel: Baldwin, J. T.; Urban, F. J.; Cooper, R. D. G.; Jose, F. L. J. Am. Chem. Soc. 1973, 95, 2401-2403. Koppel, G. A,; Koehler, R. E. **J.** Am. Chem. SOC. 1973, 95, 2403-2404. The isolation of 15 under Baldwin's conditions suggests that an electron withdrawing moiety at **C-4** of an azetidinone may be essential for C-3 proton removal in methanolic sodium borate solution.

to give **14** after ion-pair extraction (mp 196-198 "C **as** the potassium salt6). Hydrogenolysis of **14** in acetonitrile or

methanol in the presence of $10 \text{ mol } \%$ sodium borate gave **523** in high yield. When sodium borate was omitted the crude product showed virtually no $CH₃O$ resonance (^1H) NMR), suggesting acid-catalyzed decomposition via zwitterion **17** had intervened. Exchange of ethoxy for methoxy when the hydrogenolysis was performed in ethanol supports the formation of **17.** Acylation of **5** could be accomplished with acid chlorides to give racemic monobactams 1 $(X = CH₃O)$. When acylating agents derived from enantiomerically-pure α -amino acids were utilized, the resulting mixture of diastereomeric monobactams could be separated¹⁷ to provide biologically active 3R enantiomers of 1 $(X = CH₃O)$.

The availability of **4** and *5* from 6-APA, and their ready conversion to monobactams **(l),** has enabled **us** to evaluate structure-activity relationships in this novel family **of** β -lactam antibiotics. The sulfonation-deprotectionacylation methodology reported in this communication **has** proved to be quite general. We will report its application to 4-substituted monobactams, including the synthesis of the first monobactam for clinical development (SQ 26,776, azthreonam3) in due course. In the accompanying communication, 24 we describe a conceptually different preparation of monobactams.

Registry No. 3, 551-16-6; **4,** 80082-73-1; **(f)-5,** 80082-75-3; **6,** 80082-77-5; **9,** 80082-79-7; **10,** 80082-80-0; **11,** 80082-81-1; **12a,** 80082-83-3; **12b,** 80082-84-4; **12~,** 80082-47-9; **(&)-13,** 78184-08-4; **(A)-14,** 80082-86-6; **15,** 80082-87-7; **(A)-16,** 80082-88-8.

(23) 5: ¹H NMR (CD₃CN) 3.27 (CH₃O), 3.50 ppm (d, $J = 6$ Hz, C-(24) Floyd, D. M.; Fritz, A. W.; Cimarusti, C. M. *J. Org. Chem.* 1982, (24) Floyd, D. M.; Fritz, A. W.; Cimarusti, C. M. *J. Org. Chem.* 1982,

47. 176.

C. **M.** Cimarusti,* **H. E.** Applegate, **H.** W. Chang **D. M.** Floyd, W. **H.** Koster W. A. Slusarchyk, **M.** *G.* **Young**

> The Squibb Institute for Medical Research Princeton, New Jersey **08540**

> > *Received October 19, 1981*

Hypocholesterolemic Agent Compactin **(ML-236B).** Total Synthesis **of** the Hexahydronaphthalene Portion

Summary: **A** synthesis of **2,** the hexahydronaphthalene portion **of** the hypocholesterolemic agent compactin **(l),** is described. The four contiguous asymmetric centers of **¹**were established in an efficient stereospecific manner via a Lewis acid mediated intramolecular Diels-Alder reaction of **11.**

Sir: Compactin (or ML-236B, **l),** a fungal metabolite isolated virtually simultaneously in 1976 by Brown et al.¹

⁽¹¹⁾ Bose, A. K.; Tasi, M.; Sharma, *S.* D.; Manhas, M. *S.* Tetrahedron Lett. 1973, 1779-1783.

⁽¹²⁾ Kamiya, T. In "Recent Advances in the Chemistry of β -Lactams"; Elks, J., Ed.; Special Publication No. 28, The Chemical Society; Burlington House: London, 1977; pp 281-294.

⁽¹³⁾ Solution (CH₃CN) infrared spectra of 11 show carbonyl absorptions at 1773 (β -lactam) and 1725 cm⁻¹ (urethane).